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»   • ABSTRACT 

A lumber of commonly used finite-difference analogs to partial derivatives 
in two space dimensions are investigated, and a few variations are proposed. 
The accuracy of these analogs is assessed by obtaining numerical results for 
deformations for which the analytical gradients can be evaluated.    None of 
the analogs appeared superior for those deformations which were investigated, 
and it appears that a choice may be made on the basis of computational con- 
venience. 
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SECTION  I 

INTRODUCTION 

One of  the  principal  difficulties  in constructing 

finite difference analogs  to the Lagrangian equations of 

compressible  fluid motion  in  two space  dimensions   is  the 

choice of  finite difference representation of  the  spatial 

derivatives  in  the momentum equation.     A number of different 

expressions have appeared  in  the  literature,   but   there   seems 

to  be  little  information available  regarding their relative 

merits. 

Finite difference representations of  spatial  gra- 

dients  should   introduce minimal   truncation errors.     However, 

some other properties are often considered  to be more   im- 

portant.     As a Lagrangian mesh  becomes   severely distorted, 

it   is  found  that  some  finite difference  expressions  lead  to 

accelerations  in  the wrong direction.     This  leads  to an   in- 

stability and eventual  stoppage of  the  computer.     Such  se- 

vere distortions  sometimes  occur  in  relatively unimportant 

areas of  the  flow,   and   it   is often considered more  impor- 

tant   that a  finite  difference expression   lead  to accelera- 

tions of  the correct   sign  than  of  the  correct absolute mag- 

nitude. 

It has occasionally  been argued  that  finite dif- 

ference expressions  which  show  large  truncation errors   lead 

to  smoother  solutions,  and are  preferable on  this account. 

It may be noted  that   truncation errors   serve to  increase 

the acceleration  in  areas of high gradient.     In  this re- 

spect  truncation operates  in precisely  the  same way as  ar- 

tificial  viscosity,  which  is  formulated   to provide an ad- 

ditional acceleration   in areas  of high  gradient.     It  seems 

preferable,  however,   to choose  the  finite difference 



expression which has least truncation error, leaving smooth- 

ing of the solution to artificial viscosity terms over which 

one can exercise some control. 

Several common finite difference expressions are 

discussed.  In order to investigate truncation eirrors the 

following procedure was followed. A quadratic deformation 

was postulated, for which the density change could be found 

analytically using the principle of conservation of mass.  On 

assuming an equation of state, the associated pressure change 

could be found analytically, and the acceleration found by 

applying the principle of conservation of momentum. A 

Murnaghan equation of state was used.  The corresponding de- 

formation of an initially square mesh was calculated for the 

same quadratic deformation, so that the acceleration could be 

computed using the finite difference expressions. The be- 

havior of the finite difference expressions after crossing 

of cell vertices and after cell inversion was also investigated 



SECTION II 

DIFFERENTIAL EQUATIONS 

2.1 Tensor Equations 

Denote the spatial (Eulerian) coordinate >fc and 

the material (Lagrangian) coordinate K    ,  where we use majus- 

cules to refer to the original state, minuscules to refer to 

the current deformed state. At time t"0 take A* - K ol • 

Consider the deformation 

*'  - x' (X',   X\  X') 2.1 

with Jacobian J given by 

T     - l^tzl 2.2 
where (   ),j is the covariant derivative with respect to the 

X1. 

The tensor equation of mass conservation is simplv 

£•     r   *     £? 
?   '    r '    dV 2-> 

where p  is the density, pQ   the initial density at time t^O .md 

^w and d V corresponding volume elements in the deformed and 

undeformed states.  The tensor equation of momentum conservation 

in a perfect fluid is 

«i ■ " p P.i. 2.4 

where a4 is the acceleration vector,^ the pressure and (  ),; 

is the covariant derivative with respect to the **.  It will 

be useful to write this equation in the equivalent form 

*i  m   ~ p   F>,j   *X.l 2.5 

or since 

x ^    co**cter   ( X1,!) 2.6 



Ai    * ' P.   P'I    coimcfcr(xiz) 2./ 

where we have used equation 2. }. 

We will choose a quadratic deformation  (equation  2,1) 
in   the  form 

«•   '   <?« *'Jf"   •  ««V X'   ♦  *' 2.8 

where the coefficients  * • JH t ^ •'j-  and 5* are arbitrarily 

chosen constants.  It can be seen that the b1  introduce a uni- 
form translation while the ^.jintroduce a homogeneous deforma- 

tion and rotation.  These terms do not lead to accelerations 

and are retained for convenience in controlling the size and 

position of the deformed meshes.  Since we have not restricted 

ourselves to small deformations the ctTK  and «<.4j cannot be in- 

terpreted easily as rotations and deformations, but it may be 

noted qualitatively that the diagonal terms introduce stretches 

in the corresponding coordinate directions, while the symmetric 

parts of the off-diagonal terms introduce shears, the anti- 

symmetric parts rotations.  The formulation of the deformation 

in equation 2.8 is therefore quite flexible in producing almost 

any desired deformed mesh shape by appropriate choice of con- 

stants. 

Once the defoimation (equation 2.8) has been speci- 

fied, the density distribution may be found from equation 2.3. 

It is necessary to postulate a relation between p   and p  before 
finding the acceleration.  The particular form of this relation 

does not affect the conclusions materially.  An "equation of 

state" In the Murnaghan form has been chosen for its simplicity 

or using equation 2.3 

D - k  (  f* -I ) 2.9 



where k   and f   are  material constants.  We are principally con- 

cerned with relatively incompressible materials, and constants 

appropriate for aluminum have been used in the calculations de- 

scribed later (i.e. k r /. 1 « /0 dyn cm , J'* 4 / y» « i-7^ gm cm ). 

2.2 Physical Equations 

Only two-dimensional rectangular Cartesian coordinates 

(   x,  x     ) and two-dimensional axially symmetric coordinates 

( *, z where we have written x for the radius) are considered. 

The continuity equation (equation 2.3) is usually taken in its 

second form 

2.10 

while the momentum equation (equation 2.4) takes the form 

2.11 

Defining «» / for the rectangular case, and «-2 for 

the cylindrical case, the Jacobian for both cases may be written 

J « 

hi 
ax 

I* 

ii) 
«-I 

0 

2.12 

Thus   the alternate  form of  the momentum equation 

(eouation  2.7)  becomes 



A«   • 

*-i 

»""A [Si n      ax a-z /( x/ 

2.13 

oc-i 

2.3    Analytical Gradients 
Specializing to two-dimensional rectangular Carteslon 

and cylindrical polar coordinates,  the deformation  transforma- 
tion  (enuatlon  2.8)  retains only the following  terms 

x   •    c,, X l   ^    c,x XZ    *    d 2* 

+ d„ X     *    <*,* i       *      b, 

2.14 

z *   ctl Xx    *    ciX X2     +   Cj) lx 

Thus the Jacoblan of the transformation can be writ- 

ten (from equation 2.12) 

J   ■    (fi D ~  B C ) £ *'* 2.15 

where 

fi •   dx   m   2 c" *   *   c,x *    * **» 

5 * ff  m   2c,9Z + c.x*    * <*'* 



'&'**,**£»**  <*» 

D  * j§   * 2c„2 *  c» *   i- ** »3 

Then density and pressure are given by equations 2,3 

and 2,9 respectively.  In order to find the accelerations, it is 

necessary to use the second form of the momentum equations, 

which may he written 

_ *"' (   *P   ~ }P 

f-i 

o lg*-&l>} 
Note that differentiation of equation 2.9 leads to 

so that equations 2.16 can be conveniently written 

a     " — JTT,  \ ix    D    '   ZZ   C  J 

t k s '-' 
»I 

P, T 
77.  j« *        9X    BJ 

2.16 

2.17 

2.18 



where the derivatives of J are easily found by differentiating 

equation 2.15. 

Once the values of the 12 coefficients are specified 

in the deformation transformation (equation 2.1^) it is a 

straightforward task to evaluate the density, pressure and ac- 

celerations at any particular point specified by its initial co- 

ordinates ( X, 2 ). 

Finally the magnitude of the acceleration vector is 

* - / «r * ♦ *»* 2.19 

and the angle between the acceleration vector and the x axis 

is 

6   • *rc^n ^ 2#20 

8 



SECTION III 

FINITE DIFFERENCE EXPRESSIONS 

A number of finite-difference analogs to the equation 

of mass and momentum conservation have been evolved.  An attempt 

is made to collect brief derivations of some of these here. 

Quantities are considered only at a finite number of 

locations in space, initially distances ^1X and Zi2 apart.  The 

initial X  coordinate after the J*  increment AX is denoted Xz , 

and the initial^ coordinate after the /* increment A?is de- 

noted 2j  .  In effect the material is covered by a finite co- 

ordinate grid which deforms with the material (Fig, 1),  Co- 

ordinates x and a: at time t for the point Aj , £    are 
denoted xxy , x^. 

While positions, velocities and accelerations are con- 

sidered only at the vertices of the finite difference grid, den- 

sities and pressures are considered averaged over the meshes, 

and are denoted />z<ttu   T^,lx  , etc. 

In developing the finite difference equation, it is 

considerably more convenient to use the notation of Figure 1, 

translating the equation into indicial notation before program- 

ming for the computer. 

3.1 Mass Equation 

The second form of the mass equation 

'•'• 7Z- 3-1 

can be set into finite difference form by considering the de- 

formed mesh to consist of quadrilaterals.  The current area of 

mesh 1 (Figure 1) is then 



while the original area ft,    at time t-0 is found by sub- 
stituting X and 2 for x and x in equation 3.2. 

Both the rectangular Cartesian and cylindrical polar 
cases may be written down simultaneously by defining < • / 
for the rectangular, * > 2  for the cylindrical cases as be- 
fore. The mass equation becomes 

m, 

where x,    is  the radius of the centroid of the area /f, t and m, 
is a mesh constant defined as 

m , - p. *.#(xj 5    I*-» 
3.4 

The radius of the centroid appears only in the cylindrical case. 
A reasonable approximation for moderate distortions is 

*,-zl *M      *      X. x# * x.; 3.5 

/. 

A better, but lengthier, expres- 
sion may be obtained by dividing 
the quadrilateral into two tri- 
angles, i.e.,by taking 

^  3.6 
*L (Sj""  *  /?M [xj .- i*-» 

where 

2«- %(«•♦«*.♦ «t) 

XC« '/j (  *9   * Xm   *   *»   ) 

10 



and where m, Is given by 

3.7 

For the rectangular case, A«/, and these equations 

are identical to the previous ones, (equations 3.3 and 3.4). 

It may be  noted parenthetically, that the same results 
are achieved by starting with the alternate form of the mass 

equation (equation 2.3) as may be expected.  Terms in the Jaco- 

blan (equation 2.12) may be written in finite difference form as 

*H       _ *< 

ax 
^jr.J 

f xÄ *•* -Ar. i*) 
3.8 

etc. 

When these are substituted into equation 2.12, and terms are ex- 

panded and simplified, we obtain 

y~ {(*M'*.X**-**J-(**-*'X*'~**J) 3.9 
AX AZ 

When this is inserted into equation 2.3, we immediately arrive 

again at equations 3.3 and 3.4. 

3.2 Momentum Equation 

A variety of difference analogs have been given for 

the pressure gradient terms in the momentum equations (equations 

2,11),  Some of these are described in the following, 

3,2.1 Taylor's Expansion 

The pressure is known at discrete 

points 1, 2, 3, 4 surrounding 

point 0 at which the pressure 

gradients are to be evaluated. 

V- 
1 
1 
• 1 

11 



One method Is to apply Taylor's expansion between points 0 and 

1, 0 and 2,etc. to obtain four equations of the form. 

p,'p0* [*, -*.) £ * (*, -*.) §( 
3.10 

where tenrs of third and higher order in ( «,-*•) and (x,-xa) 

have been omitted.  Kolsky'proposed solving this overdetermined 

system of equations for f£  and ff   by first solving for (^-^) 
and (^».-Ä»), obtaining the two equations 

where Sgn  ■ i ( *i* **) ~  ^«»etc. are measures of the assym- 
metry of the mesh.  Omitted terms are of second and higher order 

in the mesh size ( .x,-*))» etc.  Providing the mesh size is 

12 



small, these higher order terms are negligible compared to the 

terms retained above.  The above equations may now be solved 

for the gradients 

3.11 

where 

-  i {(*.'*sX**-**) -l*>-**X**~**)} 

It is ?een that fi  represents the area of the quadrilateral 

1 2 J 4. 

The remainder terms ^jr and Rx   involve products of 

the mesh size and the £'*  (e.g., (*, - * ) £ n tj   , etc.).  If the 

mesh is nearly symmetric, these terms are negligible compared 

to the terms which have been retained.  It is clear that the 

error terms vanish for an undistorted mesh, but become progres- 

sively larger as the mesh distorts. 

Equations 3.9 require coordinates of the centrolds of 

quadrilateral 1, 2, 3, 4.  Kolsky simply used the approximate 

equation 3.5, obtaining the final equations 

n 

3.12 



There are  two possibilities  for representing  the denominator 
{.ftp)   in equation  3.12   in a  simple form.Kolsky used' 

(ftp)   *     %(*,&   *   AxA   * *>J>*   * *<P*) 3.13 
A second  expression  follows  from equation   3.3  for the cylindri- 
cal  case 

[*?)    *   i ( **   *    mx   *   m3  *   m* )/(*.)*'' 3.14 
where x9  is used as an approximation to the centroid of the 

quadrilateral 12 3 4.  Equation 3.7 is used for the m's.    For 

certain serious distortions this may lead to considerable error. 

For the rectangular case, equation 3.14 is equivalent to equa- 

tion 3.13. 

It may be noted parenthetically that the same results 

are achieved by starting with the alternate form of the momentum 

equation (equation 2.13), as may be expected.  The Lagrangian 

pressure gradients may be represented by • 

^ . -L   /   ***    -      *  Iff» ) 

IP        _L / A ♦ A _ Px+A  ) 
}2    '   AZ   {    "ST"      T-   ) 

Inserting  these  together with equations   3.8   into equations  2,13 
and  simplifying, 

i/> ^X ^2    C 
3.16 

With the aid of equations 2.3 and 3.9, (the latter written for 

quadrilateral 12 3 4), it is seen that the above equations 3.16 

are exactly equivalent to the previous result, equations 3.11. 

14 



I 

,L ■>'•', 

^# 

3.2.2    "Midpoint" Method 

Amurud and Orr    noted  that Kol- 

sky's  scheme   led  to reversal  of 

signs of the  accelerations when 
the mesh became  sufficiently dis 

torted so that  quadrilateral 
12  3 4 became  inverted.    They 

proposed applying Taylor's theo- 

rem between  points  0-5,  0-6,  0-7 

0-8  as shown,   in conjunction 
with a test  and approximate cor- 

rection procedure  to prevent  in- 

version of quadrilateral 5 6  7 8, 

Substituting subscripts  5, 6,  7,  8  for  subscripts  1, 
2,  3,  4   In equations 3.11  and writing 

pr •   l ( *, * P*.) etc. 

»j. • i f »* ♦ *.; etc. 
the following equations result 

i 
4 - «< ♦ Z»    ~*») 

'I 
x   H*fiJ (ih-PjX**  -  *c   *   **    -**) 

3.17 

lPx-**X** -*c    * *0   "*$)) 

The same expressions may be used for  (/If)  as  before  (equations 

3.13 and  3.14). 

15 



3.2.3    Green's  Trarsformat Ion 

• f A  
\ 
\ 
\- -^ 

/ 

A different  approach to the 

problem of finding pressure 

gradients follows from Green's 

Transformatlonf'* In two dimen- 

sions 

fpn^s     -  y>,t*U 3.18 

where n- is the outward normal vector to the circuit f enclos- 

ing the area ft  , and the comma denotes covariant differentia- 

tion.  In component form, we are led to the two equations 

f 

dp IK" x '**t 

-jpi* - / & et» ikL * 
3.19 

Choosing  the circuit A B C D,  and considering the 

pressure on  side A B  to be given  by  its average value   />x   etc., 

-?& -xhil*1*''1'! **'(I'-**J**'(X'-'')*P*(Z'-2')} 
3.20 

where A is one half  the area of  the quadrilateral A B C D.     A 

reasonable approximation  to  the denominator  is given by equation 

3.13 or equation 3.14.     For  irregular distortions,  a better but 

much  lengthier expression would be 

3.21 /»/>  -    I ( *.'/>.    ♦  **'A   * **'?>    * *♦/>♦ ) 

16 



where    >?,     is  the area of  triangle A 0 D etc. 

Variations of  equations  3.20 suggests  themselves.     In 
stead  of representing  ( ^/^ )   by equation   3.21,  we write 

i     **,P, 2/fxpx Ifijft 2/f^/i     J 

3.22 

where ^etc. are the areas of quadrilaterals A 0 D H etc.  In 

these equations the contribution of each mesh to the accelera- 

tion is independent of the other meshes.  We can also use equa- 

tion 3.3 to write 
m, 

etc., where we use equation 3.5 for x( , in each of the above 

terms.  A further variation is to write 

»,/> -  2  /?//>, 3.24 

etc., where ^/is the area of triangle A 0 D, in each of the 

above terms. 

It may be noted  parenthetically  that   if circuit  12   3 
4  is  chosen,   the results  obtained  previously  by means of Tay- 
lor's  Theorem are obtained.     The average pressure on  side  1  2 
can  be written   i{ P* ■*■ P* )     .     Thus,  applying equations  3.19 
to the circuit   12  3 4, 

+ (**p»X**-z*) "(H+P+X** '**)} 3.25 

* (P* *KXX* -**) * (P. *PfX*>-**)} 

17 



where A is the area of quadrilateral 12 3 4. Upon simplifica- 

tion and interpolation of x and z these reduce to equations 

3.12. 

Green's Transformation has also been used to obtain 

expressions of the gradients in a triangular meshJ Triangular 

meshes are generally found to be anisotropic and are not con- 

sidered here. 

3.2.4 "Force Gradients" Method 

X 
• S 

• 
7 

c 

Gx7, • x,-x4 

An expression for  the gradients 
in use at  L.A.S.L.  may  be de- 
rived  in several ways.     For  the 
shaded  zone,  Lagrangian gradients 
may  be  expressed as 

(>% 2D-2O 

Writing similar expressions for the zone 2 B 3 0 on the opposite 

side of 0, and interpolating, the x gradient at 0 can be 

written (from equation 2.13) 

c- \*-i 

3.26 

' (z^JxT^Wr   ~   l**-*J[X.-X€J \Xl7 J 
with a similar expression for aA.     Two ways of representing the 

denominators of the terms above follow from the mass equation. 

We note that the denominator of the first term (X(-X4) (ft-2#) 

represents the undeformed area of the shaded rectangle, denoted 

by (  )•• Using equation 3.4 

f;lx,-*4X*»-*»)(*)"'m  "/   "  U*'***) 

18 



Proceeding  In  this way,   the accelerations  become 

«» 

3.27 

(p, -PKX** -**) I **+*• J*"1 .     (f*-PjJ(*»~**) I*•**<)*'* 

where we  have  simply approximated    5E# ■   i (■*» ♦*•/   etc. 

Alternatively,   using eouation  3.3  these equations can 

be put   into the  form 

az 

** 

Q 

P,*%  * P* A* A^i ^^ /»J 

(P,-P4)l *•'**) f f^^jCfÜJfiJ 

(r,-PK)(**~*o) _       (P.-PJX x,-*c) 

19 
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The  two approximations made in  the denominators of 

equations  3.27 and 3.28 are analogous to the approximations 

made  in  eouations  3.14 and  3.13. 

The above equations   (3.27 or 3.28)   lead  to difficul- 

ties for  certain  serious  distortions  in which  one or more of 

the  segments OA,   OB,  OC,  or 0Ü approach zero  length.     More com- 

plex equations,   apparently derived on a similar  basis,   but  in- 

volving multiple   interpolations  to overcome  this drawback,  have 

been reported. 

3.2.5    Virtual Work Method 

Goad      proposed a method of obtain- 
ing  the apparent  force,  and hence 

the acceleration,  on a mass point 

located at 0  by  the principle of 

virtual work.     Suppose  that  the 

point 0  is  displaced by an   infinitesimal vector displacement ^5** 
Work is done on  the surrounding four cells,  and  the energy of 

the  system   is modified by  an   increment Sf given   by 

SE *   £ (P *sk *,)„ 
where tr is   the cell volume,  and  the comma denotes covariant dif- 

ferentiation.     Thus a  force   Ffc   acts at 0 given  by 

f A 

X 

9 
■ 1 

9 

F 

J -t 

c 

<f£ *   Fk   fj 
Thus 

^   ■ £ /'^A 
and  the acceleration at 0  is  therefore 

where m is   the mass which  is  thought  of as  being concentrated 

at point 0. 

Using  the second method of  finding  the volume of a 
mesh,  (Subsection  3.1)  for mesh  1 we have within a factor (2*)*"') 

V {*.&)*-'    *   fiu(*Jm"} 
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where ^4 , ^etc. are given following equation 3.6,  To find 

the derivatives of f , we consider Jr# , r0 variable with the 

other cell vertices held fixed, and obtain for the JC direction 

for cell 1 

while for the z  direction for cell 1 

I,»..). ■ i* {(*'**)"*')-' (*.-**)) 
The mass m  associated with point 0 may be taken to be 

(within a factor (27r)'*') 

m ■ +   ( f*, * Mi  + f*j   +  /»4 J 3.29 

where m( etc. are given by equation 3.7. 

bumming terms for all four meshes 

*Ä((Äi4tiif'^-«.;^[(v^^-«.;-fr.-a'.-^jJ 
3.30 
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For  the rectangular case,«*/,  and  the equations reduce  Identi- 
cally to these obtained by Green's Transformation  (equations 
3.20). 
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SECTION IV 

RESULTS AND DISCUSSION 

Results of a number of calculations are given in this 

section.  Both the analytical and finite-difference equations 

were programmed for computation on an IBM 7094 Computer.  Results 

are shown in the figures, where results of the various finite 

difference equations are labeled as follows. 

1. Taylor Expansion Eq. 3.12 with Eq. 1.13 

2. Taylor Expansion Eq. 3.12 with Eq. 3.14 

3. Midpoint Method Eq. 3.17 with Eq. 3.13 

4. Midpoint Method Eq. 3.17 with Eq. 3.14 

5. Greens Transformation Eq. 3.20 with Eq. 3.13 

6. Greens Transformation Eq. 3.20 with Eq. 3.14 

7. Greens Transformation Eq. 3.22 

8. Greens Transformation Eq. 3.22 with Eq. 3.23 

9. Greens Transformation Eq. 3.20 with Eq. 3.21 

10. Greens Transformation Eq. 3.22 with Eq. 3.24 

11. Force Gradients Eq. 3.28 

12. Force Gradients Eq, 3.27 

13. Virtual Work Eq, 3,30 

In each case the accelerations 0-  and a    were converted to mag- 

nitude a and direction 9  by 

and percentage errors in magnitude, and angular errors in direc- 

tion compared to the true magnitude and direction were found. 

It is difficult to present results to illustrate the 

growth of the error as a function of some measure of deformation. 

Since the equation of state (equation 2,9) was nonlinear, the 
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results, expressed as a percentage of true acceleration, would 

be affected appreciabl> by the addition of a uniform (hydrostatic) 

compression.  Moreover,in the cylindrically symmetric case (fli*Z), 

the results would be heavily affected by a uniform translation 

in the radial (x) direction.  In order to eliminate these effects 

to some extent the following procedure was adopted.  The quad- 

ratic coefficients (C ) were adjusted incrementally in some ar- 

bitrary manner.  The diagonal linear coefficients ( «*»» i ^ a) 

were then given values such that the mesh with largest area was 

reduced to the area it had before deformation.  Finally the co- 

efficient b, was adjusted so that the radius of the mesh vertex 

with minimum radius was set equal to the minimum radius before 

deformation.  This procedure did not eliminate the effects of 

uniform compression or radial translation, if indeed such would 

be desirable, but ensured that the effects of uniform compression 

or translation did not dominate. 

It may be noted that if only  C„ >  ^ ••   and k,      are 

adjusted, then the deformation is one-dimensional, i.e.,there is 

no deformation in the z direction.  It is easily verified that 

for such a deformation all of the finite difference equations 

immediately reduce to the well known second order one-dimensional 

difference analog for «•; 

a ' -  -   -^—  4.2 
i{ *(**-*•)* Al**-**)} 

where we note that p, • f± , p, m p^ etc. It is therefore 

possible to check the error of the one-dimensional difference 

analog directly. 

Results are shown in Fig. 2, where the percentage error 

is plotted vs. the coefficient cn     .  Deformed mesh shapes are 

also shown to give a physical picture of the deformation.  It is 

quite clear that the error grows to very large proportions as the 

distortion becomes large. 
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Results  of   a number  of  calculationc  in which  several 
of   the quadratic   coefficients  were  varied  incrementally   are 
shown  in Fig.   3  through 8   (for  <*•/).     In each case  the next 
increment   in  deformation coefficients   led  to   inversion  of  one 
or more meshes,   i.e.,one or more mesh   areas  became negative. 
Errors  below  l/0 were  not  considered  significant.     Deformod mesh 
shapes  arc again   shown   to allow the  deformation   to be  visualized. 
The  errors grow very   rapidly as  the deformation  becomes   extreme. 
The  difference  in   error  of  the  various   finite difference  equa- 
tions   is,   in most  cases,  unimportant   compared  to  the magnitude 
of   the error.     However,   results   labeled   5-13 are generally 
somewhat  better  than   these  labeled   1-4   (Taylor Expansion and 
Midpoint Method).     One  exception may   be noted  in  Fig.   7  where 
method  10   (Eq.   3.22   using Eq.   3.24)   is  much better  than   all   the 
others.     In all  cases   the error   in  angle did not  exceed  a  few 
degrees  for  the most   extreme deformations,   and was  quite  neg- 
ligible over most  of  the range^ 

Similar  results  for ot • 2.  are   shown  in Fig.   9   through 
16,   the errors   in  both magnitude and  angle being  shown.     Defor- 
mations correspond   to  those  in Fig.   3,   4,   5 and  7  respectively. 
The  errors   in magnitude  are generally   smaller  than  the  corre- 
sponding errors  for   ot » I ,    None of  the  errors approach  zero 
as   the deformation   is  reduced.     This may   be  traced  to  the  ef- 
fect  of radial  translation,  and  is not  a  serious  concern.     It 
is   clear  from  the  results   that  no one   finite difference  equa- 
tion  is clearly  superior,  and errors  of  20-307» in magnitude  and 
20-30 degrees   in  angle might  be anticipated under  certain  con- 
ditions with  any  of   them. 

While crossing  of mass  points   could be observed  by 
suitable adjustment   of   the quadratic   coefficients,   this   occurred, 
for   the combinations   used above,   during  very  severe distortions 
where   the error was   extremely  high.     The  effect  of  crossing  of 
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mass points is somewhat more easily illustrated by choosing a 

different deformed mesh shape for which the true acceleration 

was not found. Several stages in crossing of mass points may 

be distinguished. 

Normal 

Re-entrant 

Schizoid 

Inverted 
Schizoid 

Inverted 

In a normal mesh, all included 

interior angles are less than 

180, as shown. 

The first stage of crossing oc- 

curs when one included interior 

angle exceeds 180. This may be 

termed a re-entrant mesh. 

The second stage of crossing 

occurs when one mesh vertex 

crosses an opposite side. The 

mesh then takes the form of two 

triangles, one of which has a 

negative area. This may be 

termed a schizoid mesh. 

If the deformation proceeds far 

enough, the net area of the mesh 

becomes negative. This may be 
termed an inverted mesh. 

The effect of each stage was investigated by solving 

the finite difference equations for the mesh configurations 

shown in Fig. 17.  Configuration (a) corresponded to a normal 

mesh.  The acceleration was directed to the original position 

of the central vertex, for «c • I  , as might be expected.  (For 

oc ■ 2. i C^e ret radial displacement of the centroids of the 

meshes leads to an acceleration directed in a slightly different 

direction). 

In configuration (b) the upper left-hand mesh becomes 
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re-cntranL, All finite-difference equations gave the expected 

acceleration direction except 10 (Eq. 3-22 using Eq. 3.24) which 

showed an error near 180.  This reversal in acceleration would 

lead to an accentuation of the deformation, and hence instabil- 

itVo  In configuration (c) the upper left-hand mesh became 

schizoid.  Here both 9 (Eq. 3.20 using Eq. 3.21) and 10 (Eq. 3»22 

using Eq. 3.24) showed an acceleration reversal, the other 

finite-difference equations giving the correct direction.  In 

configuration (d) the upper left-hand mesh has become inverted. 

All equations gave an acceleration reversal.  (This is traceable 

in part to the fact that the density in the inverted mesh be- 

comes negative»  The computer library routine for raising a 

number to a floating point exponent then gave a negative pres- 

sure, from equation 2,9, which was sufficiently large to out- 

weigh the contributions of the negative pressures in the other 

expanded meshes.) 

In assessing the results of the calculations presented 

in this report, it seems that none of the finite difference 

equations which were used are notably superior in accuracy. All 

except 9 and 10 (Eq- 3.20 using Eq. 3.21 and Eq. 3.22 using 

Eq. 3.24) showed no reversals in direction of the acceleration 

until at least one mesh area became negative.  At this point 

all methods failed. 

While the present calculations are hardly extensive 

enough to warrant drawing general conclusions, it does appear 

that any of the methods are equally satisfactory, provided a 

sufficiently small mesh size is chosen.  It seems appropriate 

to choose the method which requires the least number of arith- 

metic steps for solution.  Equations 3.20 seem most suitable 

for this reason. 
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Figure 2 One-Dimensional Differencing Error 

31 



0 0.05 0.1 0.15 

Figure 3    Pure Shear, a - I 

CI3=C3I 

0.2 0.25 

32 



0 0.05 0.1 0.15 
CI3S 

Figure f    Pure Rotation, a - 1 

0.2 
CI33-C3I 

33 



1000 

500- 

250 - 

er 
o 
er 
er. 

100- 

005 0.1 
Cl3'C3IsCl2 S"C21S~C33 

Figur« 5    Shear, Rotation and Compression, a - 1 

34 



0.02 005 
C 

006        008 
SC,,*-C.,= -C. 

0.10 0.12 

35 'S2    -32      ^        ^31 

Figure 6    Shear and Compression, a  -  1 

35 



Figure 7 Shear and Rotation, a - 1 
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Figur« 9 Pure Shear, a - 2 Magnitude Error 
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Figure   12    Pure  Rotation,  a  - 2    Angular  Error 
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